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Abstract— In this paper, An adaptive Radial Basis Function 

Neural Networks (RBFNN) algorithm is used to estimate the 

fundamental and harmonic components of nonlinear load 

current. The learning rates for adaptive RBFNN are further 

investigated to minimize the total error and to minimize the error 

in each of the fundamental and harmonics components. The 

performance of the adaptive RBFNN is evaluated based on the 

difference between the original signal and the constructed signal 

(the summation between fundamental and harmonic 

components). The methodology used in this paper facilitates the 

development and design of signal processing and control systems. 

This is done by training the system and obtaining the initial 

parameters for the RBFNN based on simulation. After that, the 

adaptive RBFNN can be in the real system with these initial 

parameters. 

Keywords: Energy efficiency, Power quality, Radial basis 

function, neural networks, adaptive, harmonic. 

I. INTRODUCTION  

. With the proliferation of nonlinear loads in the power 

system, harmonic pollution becomes a serious problem that 

affects the power quality in both transmission and distribution 

systems.  The problems caused by harmonics include 

malfunctioning of fuses or circuit breakers relays, heating of 

conductors and motors, insulation degradation, and 

communication interference [1] – [3]. 

Active Power Filters (APFs) have been introduced as an 

effective means to mitigate voltage and current harmonics. The 

APF measures the distorted signal and based on a harmonic 

detection algorithm, decomposes the distorted signal into 

fundamental component and other harmonic components. The 

APF then uses power electronics based circuit to compensate for 

the harmonic components, reactive power, and any other 

distortion (such as unbalanced waveforms). Harmonic detection 

techniques have been extensively studied. They can be 

categorized into three main techniques; (i) time domain filters, 

(ii) frequency domain filters, and (iii) artificial intelligent 

techniques [5-8]. With time domain filters there is a tradeoff 

between the attenuation and the phase delay (the high 

attenuation the higher phase delay and vice versa), and faster 

transition time can cause oscillations [7].The main problem with 

frequency domain filters is that these filters are not real-time 

filters [7]. The artificial intelligent filters have been introduced 

to overcome the disadvantages of the time and frequency 

domain filters. The three main techniques used in artificial 

intelligent filtering are (i) adaptive linear neuron (ADALINE), 

(ii) the popular back propagation neural networks (BPNN), and 

(iii) radial basis neural networks (RBFNN). The ADALINE is 

used as online harmonics identifier and its performance depends 

on the number of harmonics included in its structure. The 

convergence of the ADALINE slows as the number of 

harmonics included increases and also subjected to fall in local 

minima [9]-[10]. The BPNN on the other hand, deals with 

harmonic detection problem as a pattern recognition problem. It 

uses offline supervised training to identify selected harmonics. 

The long training time required in BPNN and the chance of 

falling into local minima is always present [11] – [12]. The 

RBFNN has several advantages over ADALINE and BPNN; 

capable of approximating highly nonlinear functions, its 

structural nature facilitate the training process because the 

training can be done in a sequential manner, and the use of local 

approximation can give better generalization capabilities [11] – 

[12].  Even though RBFNN has been used for harmonic 

detection, the number of hidden neurons is still large and still 

uses algorithm similar to that of BPNN. This makes RBFNN 

networks subjected to the same problem found in BPN [9]. An 

adaptive version of RBFNN was proposed in [13]. This adaptive 

RBFNN shows the possibility of improving the estimation 

accuracy by introducing weight change based on the error 

signal. In [14], the optimal values of learning rates that govern 

the weight updating were investigated. In this paper, the value 

of each of these learning rates are further investigated to 

minimize the total error and to minimize the error in each of the 

fundamental and harmonics components. 

II. ADAPTING RBFNN 

One of the major disadvantages of the feed forward 

neural networks (BPNN and conventional RBFNN) techniques 

is that; the obtained parameters do not changed once the 

training process is completed. In the presence of the noise, 

these fixed parameters can degrade the performance of the 

neural networks. The main objective of the adaptive RBFNN 

algorithm is to enhance the reliability of the conventional 

RBFNN after embedding the network in the system. This can 
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be achieved by introducing an adaptive algorithm for RBFNN 

structure that allows the change of the weights of RBFNN after 

the training process is completed. As shown in II, the RBFNN 

adjustable parameters that will affect the output is the centers 

and the weights. This algorithm assumes that the noise present 

in the system can be mitigated only by adjusting the weights 

between the hidden and the output layers, without the need of 

adjusting the values of the centers between the input and 

hidden layers.  

Fig.1 shows the general structure of the adaptive RBFNN 

algorithm.  It has the same conventional RBFNN structure 

regarding input layer, hidden layer, and output layer. But it has 

two extra components; (i) Summation component, which is 

located after the outputs of the RBFNN. The goal of this 

component is to calculate the error signal between the 

estimated outputs y and the reference (actual) signal (R). (ii) 

Weights updating component. The goal of this component is to  

 

 
Fig. 1 General Structure of Adaptive RBFNN  

 

adjust the weights in order to reduce the error signal. In the 

absence of the noise δ(k) in the input side,  the summation of 

the outputs of the RBFNN model is equal to the reference 

signal R(k). In this case the error E(k) equal to zero and no 

change in the RBFNN weights. 

 

���� = ���� − �	1��� +		2��� + ⋯+ 	
����      (1) 

 

In the presence of noise in the input side, the jth output node of 

the RBFNN will be affected by this noise as 

 

	���� = 	����� +	�����                                 (2) 

 

where 	�����  is the jth output node without noise and �����  is 

the added noise error to the jth output node.  

In this case the error E(k) is not equal to zero. 

 

In order to mitigate the effect of the noise in the performance of 

the RBFNN, the error E(k) is used to update the weights 

vectors based on the least-mean- square-error algorithm [7] as: 

 

 

�1��� = �1��� +	η1∅�������                       (3) 

⋮ 
�
��� = �
��� +	η
∅�������                   (4) 

 

where ηj is the regulation factor for the j
th

 output node. 

The weights updating will continue until the error E(k) become 

zero again.  

The above algorithm has several advantages including the 

following: 

• It has a fast convergence time because it 

adjusts only the weights between the hidden 

and output layers, which is a linear 

relationship. Therefore, fast convergence 

can be achieved. 

• The updating process could be initiated 

based on threshold value for E(k) (different  

from zero), which gives the flexibility to the 

algorithm and saves excessive 

computations. 

 This algorithm has greater capabilities compare to the 

popular neural linear adaptive algorithm (ADALINE) 

because, the RBFNN structure can be used to realize linear 

and nonlinear functions.  

III.  METHOLDGY 

  RBFNN in this paper have two outputs; one of them to 

estimate the fundamental component fy  and the other is for 

the harmonic component hy , these outputs are calculated as 

follows: 

                  )()( kWky hh Φ=
                (5) 

         
 

                   )()( kWky ff Φ=
              (6)

 

were Φ is the most common radial basis function used 

in RBFNN and is given by 
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The values of the weights will be updated as follows: 

 

              (8)        )()( kEkWW hhh Φ+= µ
     

 

             (9)       )()( kEkWW fff Φ+= µ
    

 

Updating the weight vectors of fundamental and harmonic 

components depend on the values of  fµ and hµ .  These 

values should be selected carefully to ensure fast convergence 

and system stability. The range of fµ and hµ  depends on the 

greatest eigenvalue maxλ of autocorrelation matrixR , where  

                       (10)       )]()([ kkER HΦΦ=  
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And  

max

2
0

λ
µ << ,  

 

The value of µ can be express in terms of maxλ as follows: 

                  

max

1

λ
ηµ =  

                   

So to achieve the system stability  

                        20 <<η  

Adapting hW and fW can improve RBFNN performance, if the 

values of fη and hη  are selected carefully, where some values 

of them can cause the system to diverge. Our previous work in 

[14] defined the stable margin of fη , hη  and defined the 

optimal values of fη and hη . The combinations of fη and 

hη  that give the minimum Mean squared Error (MSE) can 

be given by:  

  
9778.0=+ hf ηη

                                                           
(11) 

which means that any combination of fη and 
hη satisfies 

this equation will produce an estimated signal with 

minimum  MSE. The main aim in this paper  is to set the value 

of each one of them to minimize the total error and to minimize 

the error in each of the fundamental and harmonics 

components. 

 

 IV. Adapting Fundamental Signal Using FFT  

The main feature of the conventional RFBN filter, that the 

estimated fundamental signal has only fundamental component, 

with amplitude differ than the amplitude of the measured 

fundamental signal. While the adapting process is necessary 

since the error between the simulated and the estimated signal 

is high. So the main modification is needed here is to scale the 

weight vector of the fundamental component to have the same 

magnitude, where the scaling process will guarantee that the 

estimated fundamental signal will not having a harmonic 

component.  

The general Structure of Adaptive RBFNN using FFT for 

Adapting Fundamental Signal is shown in Fig.2. The weight 

vector of the fundamental component is scaled based on FFT, 

where the amplitude of the fundamental component in the 

simulated signal can be determined using FFT, and the 

harmonic component can be adapted by using equ.(8), where  

hη is chosen to be 1, since fη  will now be zero to achieve 

minimum total error between the estimated and the simulated 

signals. 

 The weight vector of the fundamental component will be 

modify as follows: 

  

                              (12)       ff JWW =  

Where: J  is the ratio between the amplitude of the 

fundamental component in the measured signal and the 

fundamental amplitude of the estimated signal, both of 

amplitudes can be calculated using FFT.  

The amplitude of the fundamental component in the estimated 

fundamental signal and in the simulated signal is calculated 

over a one cycle period, where at each sampled data the FFT is 

calculated over a one cycle length ending with the most recent 

sampled data, and this will be done at each sampled data, 

where all the time the FFT is calculated for one cycle length.  

At the beginning, let  hη = 0, to discuss the effect of scaling the 

estimated fundamental signal, where Fig.3 shows the amplitude 

of the fundamental component in the simulated signal (blue 

line), estimated fundamental signal by conventional RFBNN 

filter (red line) and estimated fundamental signal by scaling 

adaptive RFBNN filter using FFT ( green line), where it is clear 

that scaling adapting RFBNN filter has better estimation of the 

fundamental component compared with the conventional 

RFBNN, while the error between the estimated signal by 

scaling adapting RFBN filter and the simulated signal is high as 

it shown in Fig.4, where this error due to the differences 

between the estimated and simulated harmonic component.  

Now let hη = 1 , and scaling the fundamental component using 

FFT, the result shown in Fig.5 and Fig.6. the fundamental 

component estimation is not effected by changing hη where 

Fig.3 and Fig.4 show the same result for  hη =0 and, hη =1 

while the error between the estimated signal and the simulated 

signal is significantly reduce by choosing hη =1. 

 

 

 
 
Fig. 2 General Structure of Adaptive RBFNN using FFT for Adapting 

Fundamental Signal 
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Fig.3 Fundamental amplitude of the simulated signal (blue line), estimated 

fundamental signal by conventional RFBNN (red line), estimated fundamental 

signal by scaled adaptive RFBNN based on FFT (green line) for hη = 0 

 
Fig.4. Difference between the simulated signal and the estimated signal by 

scaling adapting  RFBNN using FFT for hη = 0 ,  

 
Fig.5 Fundamental amplitude of the simulated signal (blue line), estimated 
fundamental signal by conventional RFBNN (red line), estimated fundamental 

signal by scaled adaptive RFBNN based on FFT (green line) for hη = 1 

 
Fig.6. Difference between the simulated signal and the  estimated signal by 

scaling adapting  RFBNN using FFT for hη = 1 ,  

V. CONCLUSIONS 

Adaptive RFBNN were used to estimate the fundamental 

and harmonic signal of a simulated signal obtained from power 

electronics circuit, the results show that adapting the weight 

vectors of the fundamental and harmonic components  based on 

the total error between the estimated signal and the input signal 

using LMS is very effective to get estimated signal similar to 

the input signal with minimum error, and there are  infinite 

individual values of fη and hη can give this result, where the 

summation of them is restricted to be equal to 1. But the results 

also show that when the error between the estimated signal and 

the input signal is minimum, this doesn’t imply that the 

estimated fundamental component or the estimated harmonic 

component getting closer to the fundamental and harmonic 

components in the input signal, where adapting fundamental 

component may distort the estimated fundamental component 

and it will have harmonics.  

The adapting method is modified here in such way that the 

weight of the fundamental component is scaled using  FFT, 

while the harmonic component is adapted using LMS, the 

results show that using scaling process of adapting the 

fundamental weight vector  improve the performance of 

RFBNN filter to estimate the fundamental, harmonics and the 

total signal.  
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